957 research outputs found

    Mitigating Greenhouse Gases in Agriculture

    Get PDF
    Climate change has severe adverse effects on the livelihood of millions of the world’s poorest people. Increasing temperatures, water scarcity and droughts, flooding and storms affect food security. Thus, mitigation actions are needed to pave the way for a sustainable future for all. Currently, agriculture directly contributes about 10-15 percent to global greenhouse gas (GHG) emissions. Adding emissions from deforestation and land use change for animal feed production, this rises to about 30 percent. Scenarios predict a significant rise in agricultural emissions without effective mitigation actions. Given all the efforts undertaken in other sectors, agriculture would then become the single largest emitter within some decades, and without mitigation in agriculture, ambitious goals, such as keeping global warming below two degrees may become impossible to reach. The main agricultural emission sources are nitrous oxide from soils and methane from enteric fermentation in ruminants. In addition, conversion of native vegetation and grasslands to arable agriculture releases large amounts of CO2 from the vegetation and from soil organic matter. The main mitigation potential lies in soil carbon sequestration and preserving the existing soil carbon in arable soils. Nitrous oxide emissions can be reduced by reduced nitrogen application, but much still remains unclear about the effect different fertilizer types and management practices have on these emissions. Methane emissions from ruminants can only be reduced significantly by a reduction in animal numbers. Sequestration, finally, can be enhanced by conservative management practices, crop rotation with legumes (grass-clover) leys and application of organic fertilizers. An additional issue of importance are storage losses of food in developing and food wastage in developed countries (each about 30-40 percent of end products). Thus, there are basically five broad categories of mitigation actions in agriculture and its broader context: zz reducing direct and indirect emissions from agriculture; zz increasing carbon sequestration in agricultural soils; zz changing human dietary patterns towards more climate friendly food consumption, in particular less animal products; zz reducing storage losses and food wastage; zz the option of bioenergy needs to be mentioned, but depending on the type of bioenergy several negative side-effects may occur, including effects on food security, biodiversity and net GHG emissions. Although there are many difficulties in the details of mitigation actions in agriculture, a paradigm of climate friendly agriculture based on five principles can be derived from the knowledge about agricultural emissions and carbon sequestration: zz Climate friendly agriculture has to account for tradeoffs and choose system boundaries adequately; zz it has to account for synergies and adopt a systemic approach; zz aspects besides mitigation such as adaptation and food security are of crucial importance; zz it has to account for uncertainties and knowledge gaps, and zz the context beyond the agricultural sector has to be taken into account, in particular food consumption and waste patterns. Regarding policies to implement such a climate friendly agriculture, not much is yet around. In climate policy, agriculture only plays a minor role and negotiations proceed only very slowly on this topic. In agricultural policy climate change mitigation currently plays an insignificant role. In both contexts, some changes towards combined approaches can be expected over the next decade. Its 13 is essential that climate policy adequately captures the special characteristics of the agricultural sector. Policies with outcomes that endanger other aspects of agriculture such as food security or ecology have to be avoided. Agriculture delivers much more than options for mitigating greenhouse gas emissions and serving as a CO2 sink. We close this report with recommendations for the five most important goals to be realized in the context of mitigation and agriculture and proposals for concrete actions. First, soil organic carbon levels have to be preserved and, if possible, increased. Governments should include soil carbon sequestration in their mitigation and adaptation strategies and the climate funds should take a strong position on supporting such practices. Second, the implementation of closed nutrient cycles and optimal use of biomass has to be supported. Again, governments and funds should act on this. Policy instruments for nitrate regulation are a good starting point for this. As a third and most effective goal, we propose changes in food consumption and waste patterns. Without a switch to attitudes characterized by sufficiency, there is a danger that all attempts for mitigation remain futile. Finally, there are two goals for research, namely to develop improved knowledge on nitrous oxide dynamics, and on methods for assessment of multi-functional farming systems. Without this, adequate policy instruments for climate friendly agriculture and an optimal further development of it are not possible

    Sustainable agriculture and the production of biomass for energy use

    Get PDF
    Modern bioenergy is seen as a promising option to curb greenhouse gas emissions. There is, however, a potential competition for land and water between bioenergy and food crops. Another question is whether biomass for energy use can be produced in a sustainable manner given the current conventional agricultural production practices. Other than the land and water competition, this question is often neglected in scenarios to meet a significant part of global energy demand with bioenergy. In the following, I address this question. There are sustainable alternatives, for example organic agriculture, to avoid the negative environmental effects of conventional agriculture. Yet, meeting a significant part of global energy demand with biomass grown sustainably may not be possible, as burning significant quantities of organic matter—inherent in bioenergy use—is likely to be incompatible with the principles of such alternatives, which often rely on biomass input for nutrient balance. There may therefore be a trade-off between policies and practices to increase bioenergy and those to increase sustainability in agriculture via practices such as organic farming. This is not a general critique of bioenergy but it points to additional potential dangers of modern bioenergy as a strategy to meet significant parts of world energy deman

    Lobbying and the Power of Multinational Firms

    Get PDF
    Are national or multinational firms better lobbyists? This paper analyzes the extent of national environmental regulation when policy is determined in a lobbying game between a government and firm. We compare the resulting regulation levels for national and multinational firms. We identify three countervailing forces, the easier-to-shut-down effect, the easier-to-curb-exports effect and the multiple-plant effect. The interplay of these three forces determines whether national or multinational firms produce more, depending on such parameters as the potential environmental damages, transportation costs and the in uence of the firm. We also show that welfare levels are higher with multinational firms than with national firms when there is no lobbying, but that lobbying can reverse the welfare ordering.Multinational enterprises, regulation, policy formation, lobbying, interest groups, foreign direct investment

    Output and abatement effects of allocation readjustment in permit trade

    Get PDF
    In permit trading systems, free initial allocation is common practice. A recent example is the European Union Greenhouse Gas Emission Trading Scheme (EU-ETS). We investigate effects of different free allocation schemes on incentives and identify significant perverse effects on abatement and output employing a simple multi-period model. Firms have incentives for strategic action if allocation in one period depends on their actions in previous ones and thus can be influenced by them. These findings play a major role where trading schemes become increasingly popular as environmental or resource use policy instruments. This is of particular relevance in the EU-ETS where the current period is a trial-period before the first commitment period of the Kyoto protocol. Finally, this paper fills a gap in the literature by establishing a consistent terminology for initial allocatio

    Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture

    Get PDF
    Climate change mitigation is urgent and adaptation to climate change is crucial, particularly in agriculture, where food security is at stake. Agriculture, currently responsible for 20-30% of global greenhouse gas emissions counting direct and indirect agricultural emissions), can however contribute to both climate change mitigation and adaptation. The main mitigation potential lies in the capacity of agricultural soils to sequester CO2 through building organic matter. This potential can be realized by employing sustainable agricultural practices, such as those commonly found within organic farming systems. Examples of these practices are the use of organic fertilizers and crop rotations including legumes leys and cover crops. Mitigation is also achieved in organic agriculture through the avoidance of open biomass burning and the avoidance of synthetic fertilizers and the related production emissions from fossil fuels. Common organic practices also contribute to adaptation. Building soil organic matter increases water retention capacity, and creates more stabile, fertile soils, thus reducing vulnerability to drought, extreme precipitation events, floods and water logging. Adaptation is further supported by increased agro-ecosystem diversity of organic farms, due to reduced nitrogen inputs and the absence of chemical pesticides. The high diversity together with the lower input costs of organic agriculture is key in reducing production risks associated with extreme weather events. All these advantageous practices are not exclusive to organic agriculture. However, they are core parts of the organic production system, in contrast to most non-organic agriculture, where they play a minor role only. Mitigation in agriculture cannot be restricted to the agricultural sector alone, though. Consumer behaviour strongly influences agricultural production systems, and thus their mitigation potential. Significant factors are meat consumption and food wastage. Any discussion on mitigation climate change in agriculture needs to address the entire food chain and needs to be linked to general sustainable development strategies. The main challenges to climate change mitigation and adaptation in organic agriculture and agriculture in general concern a)the understanding of some of the basic processes, such as the interaction of N2O emissions and soil carbon sequestration, contributions of roots to soil carbon sequestration and the life-cycle emissions of organic fertilizers such as compost; b) approaches for emissions accounting that adequately represent agricultural production systems with multiple and diverse outputs and that also encompass ecosystem services; c) the identification and implementation of most adequate policy frameworks for supporting mitigation and adaptation in agriculture, i.e: not putting systemic approaches at a disadvantage due to difficulties in the quantification of emissions, and in their allocation to single products; d) how to assure that the current focus on mitigation does not lead to neglect of the other sustainability aspects of agriculture, such as pesticide loads, eutrophication, acidification or soil erosion and e) the question how to address consumer behaviour and how to utilize the mitigation potential of changes in consumption patterns

    Nemesis Reconsidered

    Full text link
    The hypothesis of a companion object (Nemesis) orbiting the Sun was motivated by the claim of a terrestrial extinction periodicity, thought to be mediated by comet showers. The orbit of a distant companion to the Sun is expected to be perturbed by the Galactic tidal field and encounters with passing stars, which will induce variation in the period. We examine the evidence for the previously proposed periodicity, using two modern, greatly improved paleontological datasets of fossil biodiversity. We find that there is a narrow peak at 27 My in the cross-spectrum of extinction intensity time series between these independent datasets. This periodicity extends over a time period nearly twice that for which it was originally noted. An excess of extinction events are associated with this periodicity at 99% confidence. In this sense we confirm the originally noted feature in the time series for extinction. However, we find that it displays extremely regular timing for about 0.5 Gy. The regularity of the timing compared with earlier calculations of orbital perturbation would seem to exclude the Nemesis hypothesis as a causal factor.Comment: 10 pages, 2 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Strategies for feeding the world more sustainably with organic agriculture

    Get PDF
    The authors are grateful for the inputs from Caterina Batello, Jan Breithaupt, Carlo Cafiero, Marianna Campeanu, Reto Cumani, Rich Conant, Piero Conforti, Marie-Aude Even, Karen Franken, Andreas Gattinger, Pierre Gerber, Frank Hayer, Jippe Hoogeven, Stefan Hörtenhuber, Mathilde Iweins, John Lantham, Robert Mayo, Eric Meili, Soren Moller, Jamie Morrison, Alexander Müller, Noemi Nemes, Monica Petri, Tim Robinson, Nicolas Sagoff, Henning Steinfeld, Francesco Tubiello, Helga Willer, and thank Robert Home for checking the language. KHE gratefully acknowledges funding from ERC-2010-Stg-263522 (LUISE). The input of PS contributes to the DEVIL project (NE/M021327/1), funded under the Belmont Forum / FACCE-JPI. This paper contributes to the Global Land Project (www.globallandproject.org). The authors acknowledge funding for open access publication by the Institute of Environmental Decisions, Federal Institutes of Technology, Zurich.Peer reviewedPublisher PD
    • …
    corecore